Ruby Regular Expressions
O

RegEx are part of many programmer’s tools
vi, grep, PHP, Perl

They provide powerful search (via pattern matching)
capabilities
Simple regex are easy, but more advanced patterns

can be created as needed (use with care, may not be
efficient)

ruby syntax closely follows Perl 5

Handy resource: rubular.com

From:;

Regular expression basics
how to create a pattern
how to match using =~

Finite state automata
Working with match data
Working with named capture

Regular expression objects
Regexp.new/Regex.compile/Regex.union

Regular Expressions

__ @

THE BASICS

Regular Expression patterns

» Constructed as
/pattern/
/pattern/options
%r{pattern}
%r{pattern}options

» Options provide additional info about how pattern
match should be done, for example:
1 — 1gnore case
m — multiline, newline is an ordinary character to match
u,e,s,n — specifies encoding, such as UTF-8 (u)

From: http://www.ruby-doc.org/docs/ProgrammingRuby/html/language.htmi#UJ

=~ 1s pattern match operator
string =~ pattern

OR
pattern =~ string

Returns the index of the first match

Returns nil if no matches

Note that nil doesn’t show when printing, but you can test for
it

Literal characters

O

~ TN T T

'0-9]/ match digit
~0-9]/ match any non-digit
‘aeiou]/ match vowel

Rr]uby/ match Ruby or ruby

/~Ruby/ # Ruby at start of line

/Ruby$/ # Ruby at end of line

/\ARuby/ # Ruby at start of line

/Ruby\Z/ # Ruby at end of line

/\bRuby\b/ # Matches Ruby at word boundary

Using \A and \Z are preferred in Ruby (vs $ and *)

Alternatives

O

/./ #match any character except newline
/./m # match any character, multiline
/\d/ # matches digit, equivalent to [0-9]

/\D/ #matc

1 non-digit, equivalent to [*0-9]

/\s/ #matcl

n whitespace /[\r\t\n\f]/ \fis form feed

/\S/ # non-whitespace
/\w/ # match single word chars /[A-Za-z0-9_]/
/\W/ # non-word characters

NOTE: must

escape any special characters used to create

patterns, such as . \ + etc.

» + matches one or more occurrences of preceding

expression
e.g., /[0-9]+/ matches “1” “11” or “1234” but not empty
string
» ? matches zero or one occurrence of preceding
expression

e.g., /-?[0-9]+/ matches signed number with optional
leading minus sign
» * matches zero or more copies of preceding

expression
e.g., /yes[!]*/ matches “yes

2 <€

yes!” “yes!!” etc.

/\d{3}/ # matches 3 digits
/\d{3,}/ # matches 3 or more digits
/\d{3,5}/ # matches 3, 4 or 5 digits

Assume s = <ruby>perl>
/<.*>/ # greedy repetition, matches <ruby>perl>
/<.*?>/ # non-greedy, matches <ruby>

Where might you want to use non-greedy repetition?

Extra info, good to know but not on exams etc.

() can be used to create groups

/\D\d+/ # matches non-digit followed by digits, e.g.,
a1111

/(\D\d)+/ # matches aib2a3...

([Rr]uby(,\s)?)+

Would this recognize (play with this in rubular)
“Ruby”
“Ruby, ruby”

“Ruby and ruby”
(13 RU BY”

Finite State Automata

__ @

A BRIEF INTRO

Formally a finite automata is a five-tuple(S.%.9, s,, S;)
where

* Sis the set of states, including error state S_. S
must be finite.

* X is the alphabet or character set used by
recognizer. Typically union of edge labels
(tfransitions between states).

* 5(s,c) is a function that encodes transitions (i.e.,
character c in ¥changes to state sin S.)

* s,is the designated start state
* S.is the set of final states, drawn with double

circle in Tr"ﬁlwrelér'yupgo%l)&g{r&n\'/\lew — we won't be too formal in csci400

Finite automata to recognize fee and fie:

TS

S={s_,s,s, S8, S, S}

2={f,e 1}

o(s,c) set of transitions shown above

S, =S,
S= {33, s5}

Set of words accepted by a finite automata F forms a language L(F). Can
also be described by regular expressions.

/feel|fie/
/leile/

Note: events/transitions are on the lines. Putting
them in the nodes/circles is the #1 mistake.

Note 2: end states should be in double lines, see next

slide
OO0

Pascal id is a letter followed optionally by letters and
digits
/| A-Za-z][A-Za-z0-9]*/

A-Za-z0-9

@ A-Za-z (S

Go to rubular.com and review RegEx quick reference
(same material as prior slides, but more concise)

Look up the rules and create both FSA and RE to
recognize:

C identifier
Perl identifier
Ruby method identifier

Turn in for class participation

?=0o0ri1

A-Z .
|A-Z]?x @ . @ @

A-Z
+ =1 Or more

[A-Z]+ @ Az ('S

() = group

(a-z-2n+ O &)

Reg Exp to FSA

O

RegExp in Ruby

__ @

SOME HANDY FEATURES

MatchData

» After a successful match, a MatchData object is
created.

o Accessed as $~.

» Example:
> "I'love petting cats and dogs" =~ /cats/
puts "full string: #{$~.string}"
puts "match: #{$~.to_s}"
puts "pre: #{$~.pre_match}"
puts "post: #{$~.post_match}"

(@)

(@)

(@)

@)

Named Captures

O

Regexp class

» Can create regular expressions using Regexp.new or
Regexp.compile (synonymous)

ruby pattern = Regexp.new("ruby",
Regexp: : IGNORECASE)

puts ruby pattern.match("I love Ruby!")

=> Ruby

puts ruby pattern =~ "I love Ruby!"

=> 7

Regexp Union

» Creates patterns that match any word in a list

lang pattern = Regexp.union("Ruby", "Perl", /Java(Script)?/)
puts lang pattern.match("I know JavaScript")

=>

JavaScript

» Automatically escapes as needed

pattern = Regexp.union (" ()","[1","{}")

Resources

Some Resources

e http://www.bluebox.net/about/blog/2013/02/using-regula
r-expressions-in-ruby-part-1-of-3/

e http://www.ruby-doc.org/core-2.0.0/Regexp.html

e http://rubular.com/

e http://coding.smashingmagazine.com/2009/06/01/essenti
al-guide-to-regular-expressions-tools-tutorials-and-resourc

es/

e http://www.ralfebert.de/archive/ruby/regex cheat sheet/

e http://stackoverflow.com/questions/577653/difference-bet

ween-a-z-and-in-ruby-regular-expressions (thanks, Austin and
Santi)

Topic Exploration

e http://www.codinghorror.com/blog/2005/02/regex-use-vs-regex-abuse.html

e http://programmers.stackexchange.com/questions/113237/when-you-should-
not-use-regular-expressions

e http://coding.smashingmagazine.com/2009/05/06/introduction-to-advanced-
regular-expressions/

e http://stackoverflow.com/questions/5413165/ruby-generating-new-regexps-ir
om-strings

A little more motivation to use...

e http://blog.stevenlevithan.com/archives/10-reasons-to-learn-and-use-regular-
expressions

e http://www.websiterepairguy.com/articles/re/12 re.html

No longer required — so explore on your own.

