
AND FINITE AUTOMATA…

Ruby Regular Expressions

Why Learn Regular Expressions?

● RegEx are part of many programmer’s tools
○ vi, grep, PHP, Perl

● They provide powerful search (via pattern matching)
capabilities

● Simple regex are easy, but more advanced patterns
can be created as needed (use with care, may not be
efficient)

● ruby syntax closely follows Perl 5

From: http://www.websiterepairguy.com/articles/re/12_re.html

Handy resource: rubular.com

Outline

● Regular expression basics
○ how to create a pattern
○ how to match using =~

● Finite state automata
● Working with match data
● Working with named capture
● Regular expression objects

● Regexp.new/Regex.compile/Regex.union

THE BASICS

Regular Expressions

Regular Expression patterns

● Constructed as
○ /pattern/
○ /pattern/options
○ %r{pattern}
○ %r{pattern}options

● Options provide additional info about how pattern
match should be done, for example:
○ i – ignore case
○ m – multiline, newline is an ordinary character to match
○ u,e,s,n – specifies encoding, such as UTF-8 (u)

From: http://www.ruby-doc.org/docs/ProgrammingRuby/html/language.html#UJ

Pattern Matching

● =~ is pattern match operator
● string =~ pattern
OR
● pattern =~ string

● Returns the index of the first match
● Returns nil if no matches

○ Note that nil doesn’t show when printing, but you can test for
it

Literal characters

● /ruby/
● /ruby/i

Character classes

● /[0-9]/ match digit
● /[^0-9]/ match any non-digit
● /[aeiou]/ match vowel
● /[Rr]uby/ match Ruby or ruby

Anchors – location of exp

● /^Ruby/ # Ruby at start of line
● /Ruby$/ # Ruby at end of line
● /\ARuby/ # Ruby at start of line
● /Ruby\Z/ # Ruby at end of line
● /\bRuby\b/ # Matches Ruby at word boundary

● Using \A and \Z are preferred in Ruby (vs $ and ^)
http://stackoverflow.com/questions/577653/difference-between-a-z-and-in-ruby-regular-expressions

Alternatives

● /cow|pig|sheep/ # match cow or pig or sheep

Special character classes

● /./ #match any character except newline
● /./m # match any character, multiline
● /\d/ # matches digit, equivalent to [0-9]
● /\D/ #match non-digit, equivalent to [^0-9]
● /\s/ #match whitespace /[\r\t\n\f]/ \f is form feed
● /\S/ # non-whitespace
● /\w/ # match single word chars /[A-Za-z0-9_]/
● /\W/ # non-word characters

● NOTE: must escape any special characters used to create
patterns, such as . \ + etc.

Repetition

● + matches one or more occurrences of preceding
expression
○ e.g., /[0-9]+/ matches “1” “11” or “1234” but not empty

string
● ? matches zero or one occurrence of preceding

expression
○ e.g., /-?[0-9]+/ matches signed number with optional

leading minus sign
● * matches zero or more copies of preceding

expression
○ e.g., /yes[!]*/ matches “yes” “yes!” “yes!!” etc.

More Repetition

● /\d{3}/ # matches 3 digits
● /\d{3,}/ # matches 3 or more digits
● /\d{3,5}/ # matches 3, 4 or 5 digits

Non-greedy Repetition

● Assume s = <ruby>perl>
● /<.*>/ # greedy repetition, matches <ruby>perl>
● /<.*?>/ # non-greedy, matches <ruby>

● Where might you want to use non-greedy repetition?

Extra info, good to know but not on exams etc.

Grouping

() can be used to create groups
● /\D\d+/ # matches non-digit followed by digits, e.g.,

a1111
● /(\D\d)+/ # matches a1b2a3…
● ([Rr]uby(,\s)?)+
● Would this recognize (play with this in rubular)

○ “Ruby”
○ “Ruby, ruby”
○ “Ruby and ruby”
○ “RUBY”

A BRIEF INTRO

Finite State Automata

Finite Automata – formal definition

Formally a finite automata is a five-tuple(S, Σ, δ, s0, SF) where
• S is the set of states, including error state Se. S

must be finite.
• Σ is the alphabet or character set used by

recognizer. Typically union of edge labels
(transitions between states).

• δ(s,c) is a function that encodes transitions (i.e.,
character c in Σchanges to state s in S.)

• s0 is the designated start state
• SF is the set of final states, drawn with double

circle in transition diagramTheory of Computation view – we won’t be too formal in csci400

Simple Example

Finite automata to recognize fee and fie:

● S = {s0, s1, s2, s3, s4, s5, se}
● Σ = {f, e, i}
● δ(s,c) set of transitions shown above
● s0 = s0
● SF= { s3, s5}
Set of words accepted by a finite automata F forms a language L(F). Can

also be described by regular expressions.

S
0

S
4

S
1

f

S
3

S
5

S
2 e

i e

e

What type of program might need to recognize fee/fie/etc.?

Finite Automata & Regular Expressions

● /fee|fie/
● /f[ei]e/
● Note: events/transitions are on the lines. Putting

them in the nodes/circles is the #1 mistake.
● Note 2: end states should be in double lines, see next

slide

S
0

S
4

S
1

f

S
3

S
5

S
2 e

i e

e

Another Example: Pascal Identifier

● Pascal id is a letter followed optionally by letters and
digits

● /[A-Za-z][A-Za-z0-9]*/

S
0

S
1

A-Za-z

A-Za-z0-9

Quick Exercise

Go to rubular.com and review RegEx quick reference
(same material as prior slides, but more concise)

Look up the rules and create both FSA and RE to
recognize:
● C identifier
● Perl identifier
● Ruby method identifier

Turn in for class participation

RegExp to FSA

● ? = 0 or 1
● [A-Z]?x

● + = 1 or more
● [A-Z]+

● () = group
● ([a-z][1-2])+

S
0

S
1

S
2

A-Z

ε

x

S
0

S
1

A-Z

A-Z

S
0

S
1

S
2

a-z 1-2

Reg Exp to FSA

● * = 0 or more
● [A-Z]+[0-9]* S

0

S
1

S
2

A-Z 0-9

A-Z 0-9

SOME HANDY FEATURES

RegExp in Ruby

MatchData

● After a successful match, a MatchData object is
created.

● Accessed as $~.
● Example:

○ "I love petting cats and dogs" =~ /cats/
○ puts "full string: #{$~.string}"
○ puts "match: #{$~.to_s}"
○ puts "pre: #{$~.pre_match}"
○ puts "post: #{$~.post_match}"

Named Captures

str = "Ruby 1.9"
if /(?<lang>\w+) (?<ver>\d+\.(\d+)+)/ =~ str
 puts lang
 puts ver
end

● Read more:
● http://blog.bignerdranch.com/1575-refactoring-regular-expressions

-with-ruby-1-9-named-captures/
● http://www.ruby-doc.org/core-1.9.3/Regexp.html (look for

Capturing)

Regexp class

● Can create regular expressions using Regexp.new or
Regexp.compile (synonymous)

ruby_pattern = Regexp.new("ruby",
Regexp::IGNORECASE)

puts ruby_pattern.match("I love Ruby!")
=> Ruby
puts ruby_pattern =~ "I love Ruby!“
=> 7

Regexp Union

● Creates patterns that match any word in a list
lang_pattern = Regexp.union("Ruby", "Perl", /Java(Script)?/)
puts lang_pattern.match("I know JavaScript")
=>
JavaScript

● Automatically escapes as needed
pattern = Regexp.union("()","[]","{}")

Resources

Some Resources

● http://www.bluebox.net/about/blog/2013/02/using-regula
r-expressions-in-ruby-part-1-of-3/

● http://www.ruby-doc.org/core-2.0.0/Regexp.html
● http://rubular.com/
● http://coding.smashingmagazine.com/2009/06/01/essenti

al-guide-to-regular-expressions-tools-tutorials-and-resourc
es/

● http://www.ralfebert.de/archive/ruby/regex_cheat_sheet/
● http://stackoverflow.com/questions/577653/difference-bet

ween-a-z-and-in-ruby-regular-expressions (thanks, Austin and
Santi)

Topic Exploration

● http://www.codinghorror.com/blog/2005/02/regex-use-vs-regex-abuse.html
● http://programmers.stackexchange.com/questions/113237/when-you-should-

not-use-regular-expressions
● http://coding.smashingmagazine.com/2009/05/06/introduction-to-advanced-

regular-expressions/
● http://stackoverflow.com/questions/5413165/ruby-generating-new-regexps-fr

om-strings
A little more motivation to use…
● http://blog.stevenlevithan.com/archives/10-reasons-to-learn-and-use-regular-

expressions
● http://www.websiterepairguy.com/articles/re/12_re.html

No longer required – so explore on your own.

