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Color Key

• Clickable URL link
• Write down an answer to this for class participation
• Just a comment – don’t confuse with yellow

Ruby Inheritance

https://www.youtube.com/watch?v=5Xr83DFlzjU
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Class Participation

Get out a piece of paper, we’ll be tracing some code today.
Code files (follow along with the slides)

Ruby Inheritance

./inheritance.zip
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Extending Class Behavior

• Can create subclasses (inheritance)
• May include/inherit methods from modules (mix-ins)
• Clients of class may also extend the class

• Open classes
• Adding singleton method to individual object

Ruby Inheritance
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Inheritance

• Every class has a single immediate superclass
• class Student < Person
• Object is the default superclass

• BasicObject is the parent of Object
• Few methods, useful for wrapper classes
• Can create completely separate hierachy

• e.g. BasicObject is not a superclass of Kernel

Ruby Inheritance
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Inheritance and Instance Variables
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Inheritance and Instance Variables

• Instance variables (IVs)
• Are defined within class methods
• Are created upon assignment (@age = 0)
• Every Ruby object has them

• → Instance variables have nothing to do with inheritance
• However. . .

• If all IVs defined in initialize, inheritance appears to work as
expected

Ruby Inheritance
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Example: Variable ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
end
class Student < Person

def to_s
puts "Name: #{@name}"

end
end
s = Student.new("Cyndi")
puts s

See: ruby_inheritance-1a.rb
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Example: Variable ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
end
class Student < Person

def to_s
puts "Name: #{@name}"

end
end
s = Student.new("Cyndi")
puts s

• Technically, @name not
inherited

• But initialize is called
→ creates @name

• Appears that variable is
inherited

• An instance variable created in
a parent method that the child
does not call will not exist

See: ruby_inheritance-1a.rb
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Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end
See: ruby_inheritance-1b.rb
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Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end

class Student < Person
def to_s

puts "Name: #{@name}"
end

end

See: ruby_inheritance-1b.rb
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Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end

class Student < Person
def to_s

puts "Name: #{@name}"
end

end

Trace: What is displayed?

p = Person.new("Devin")
p.setupEmail("dev@mines.edu")
s = Student.new("Gene")
p.sendEmail
s.sendEmail

See: ruby_inheritance-1b.rb
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Inheritance and Methods

Ruby Inheritance
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Inheritance and Overriding

• Child class can override parent methods
• Methods

• . . . are bound dynamically (when executed)
• . . . not statically (when parsed)

• Methods like to_s and initialize are automatically
inherited (from Object)*

*If you don’t know all of the methods of the parent class, you may
accidentally override a method!

Ruby Inheritance
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Language Comparison

• Does Java automatically call parent constructor (‘ctor’)?
• Read

• Compare to C++
• Read

• Questions*

1 In Java, when you do need to explicitly call the parent ctor?
2 In C++, why don’t they use a keyword like super to call the

parent ctor?

*Not exam topics

Ruby Inheritance

https://stackoverflow.com/questions/6318628/when-do-you-need-to-explicitly-call-a-superclass-constructor
https://stackoverflow.com/questions/120876/what-are-the-rules-for-calling-the-superclass-constructor
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Language Comparison

Assume you’re writing a C++ program with:

1 Parent named Bug, child named Mosquito
2 A method in both parent/child named bite

• What do you need to make sure this is bound dynamically?
• What happens if this is not bound dynamically?

• Write a few lines of C++ (on paper) to illustrate

Helpful reminder

Ruby Inheritance

https://stackoverflow.com/questions/2391679/why-do-we-need-virtual-functions-in-c


Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Big Picture

Usually, when dealing with an OO language. . .

• Inheritance is a part of the language
• There’s a way to ensure parent/child vars are initialized
• Child classes can call parent class methods
• Child classes can override parent methods

• Runtime: dynamic/late binding
• Compile time: static/early binding

Ruby Inheritance
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Override Parent Method
class Person

def initialize(name)
@name = name

end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def introduce

puts "I'm a student and "\
"my name is #{@name}"

end
end

See: ruby_inheritance-2a.rb
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Override Parent Method
class Person

def initialize(name)
@name = name

end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def introduce

puts "I'm a student and "\
"my name is #{@name}"

end
end

joe = Person.new("Joe")
joe.introduce
jamie = Student.new("Jamie")
jamie.introduce

See: ruby_inheritance-2a.rb
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Ruby Method Visibility

1 Public
• Methods are public by default
• initialize is implicitly private (called by new)

2 Private
• Only visible to other methods of the class/subclass
• Implicitly invoked on self

3 Protected
• Like private, but can be invoked on any instance of class
• Allows objects of same type to share state (used infrequently)

These only apply to methods!
Instance vars are private, constants are public

Ruby Inheritance
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Method Visibility Example 1

class X
# public methods by default
def fn

# ...
end
protected :fn
def helper

# ...
end
private :helper

end

Ruby Inheritance
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Method Visibility Example 1

class X
# public methods by default
def fn

# ...
end
protected :fn
def helper

# ...
end
private :helper

end

• Can override visibility (reference)
• private_class_method :new

• private and protected
• Guard against unintended use*

*But, with metaprogramming, it’s possible
to call these methods

Ruby Inheritance

https://en.wikibooks.org/wiki/Ruby_Programming/Syntax/Classes#Private


Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Method Visibility Example 2 (1/2)

class Person
def initialize(name)

@name = name
puts "initializing"

end

def talk_to(friend)
puts "Talking to #{@friend}"

end
private :talk_to

end
See: ruby_inheritance-2b.rb
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Method Visibility Example 2 (2/2)

class Person
def initialize(name)

@name = name
puts "initializing"

end

def talk_to(friend)
puts "Talking to #{@friend}"

end
private :talk_to

end

p = Person.new("Yeezy")
p.talk_to("Weezy")

See: ruby_inheritance-2b.rb

Ruby Inheritance
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Abstract Class Methods

• Implicitly defined in Ruby
• Parent class calls methods that child must define

Ruby Inheritance



Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Abstract Class Methods (1/3)

class AbstractGreeter
def greet

puts "#{greeting} #{who}" # call abstract methods
end
def say_hi; puts "Hi!"; end # concrete method

end
class WorldGreeter < AbstractGreeter

def greeting; "Hello"; end
def who; "Jerry"; end

end

See: ruby_inheritance-3.rb
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Example: Abstract Class Methods (2/3)
class AbstractGreeter

def greet
puts "#{greeting} #{who}" # call abstract methods

end
def say_hi; puts "Hi!"; end # concrete method

end
class WorldGreeter < AbstractGreeter

def greeting; "Hello"; end
def who; "Jerry"; end

end

What makes AbstractGreeter an abstract class?

How does this compare to Java? C++?
See: ruby_inheritance-3.rb

Ruby Inheritance
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Example: Abstract Class Methods (3/3)

# `WorldGreeter` implements methods for `greet`
WorldGreeter.new.greet
# cannot call abstract method
AbstractGreeter.new.greet
# can call concrete method
AbstractGreeter.new.say_hi

See: ruby_inheritance-3.rb

Ruby Inheritance
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Example: Chaining Methods (1/3)

class Person
def initialize(name)

@name = name
end
def introduce

puts "Hi, I'm #{@name}"
end

end
See: ruby_inheritance-4.rb
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Example: Chaining Methods (2/3)

class Person
def initialize(name)

@name = name
end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def initialize(name)

super(name)
@major = major

end
def introduce

super
puts "I'm studying #{@major}"

end
end

See: ruby_inheritance-4.rb
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Example: Chaining Methods (3/3)

p = Person.new("Lauryn")
p.introduce
s = Student.new("Shawn", "Poetry")
s.introduce

See: ruby_inheritance-4.rb

Ruby Inheritance
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Class Variables

Ruby Inheritance
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Class Variables – Review

• When did we use static class vars in Java/C++?
• Ruby class variables can be used for similar purposes

Ruby Inheritance
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Example: Class Variables (1/2)

class Person
def initialize(name)

@name = name
@@thing2 = "water"

end
def show

puts "Person: #{@@thing1}"
end

end

class Student < Person
def make_thing1

@@thing1 = "oil"
end
def show

puts "Student: #{@@thing1}"\
" and #{@@thing2}"

end
end

See: ruby_inheritance-5.rb
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Example: Class Variables (2/2)

a = Person.new("Amy")
b = Student.new("Bob")
# create class variable `thing1`
b.make_thing1
b.show
# all students can access `thing1`
c = Student.new("Charlie")
c.show
# parent cannot access `thing1`
a.show # error

See: ruby_inheritance-5.rb
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Class Instance Variables

May want to explore on your own Class vs. Class-instance variables*
*Not on exam

Ruby Inheritance

https://stackoverflow.com/questions/3802540/difference-between-class-variables-and-class-instance-variables
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