
Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Ruby Inheritance
CSCI400

05 September 2017

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Color Key

• Clickable URL link
• Write down an answer to this for class participation
• Just a comment – don’t confuse with yellow

Ruby Inheritance

https://www.youtube.com/watch?v=5Xr83DFlzjU

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Class Participation

Get out a piece of paper, we’ll be tracing some code today.
Code files (follow along with the slides)

Ruby Inheritance

./inheritance.zip

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Basics

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Extending Class Behavior

• Can create subclasses (inheritance)
• May include/inherit methods from modules (mix-ins)
• Clients of class may also extend the class

• Open classes
• Adding singleton method to individual object

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Inheritance

• Every class has a single immediate superclass
• class Student < Person
• Object is the default superclass

• BasicObject is the parent of Object
• Few methods, useful for wrapper classes
• Can create completely separate hierachy

• e.g. BasicObject is not a superclass of Kernel

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Inheritance and Instance Variables

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Inheritance and Instance Variables

• Instance variables (IVs)
• Are defined within class methods
• Are created upon assignment (@age = 0)
• Every Ruby object has them

• → Instance variables have nothing to do with inheritance
• However. . .

• If all IVs defined in initialize, inheritance appears to work as
expected

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Variable ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
end
class Student < Person

def to_s
puts "Name: #{@name}"

end
end
s = Student.new("Cyndi")
puts s

See: ruby_inheritance-1a.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Variable ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
end
class Student < Person

def to_s
puts "Name: #{@name}"

end
end
s = Student.new("Cyndi")
puts s

• Technically, @name not
inherited

• But initialize is called
→ creates @name

• Appears that variable is
inherited

• An instance variable created in
a parent method that the child
does not call will not exist

See: ruby_inheritance-1a.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end
See: ruby_inheritance-1b.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end

class Student < Person
def to_s

puts "Name: #{@name}"
end

end

See: ruby_inheritance-1b.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Variable Not ‘Inherited’

class Person
def initialize(name)

@name = name
puts "initializing"

end
def setupEmail(email)

@email = email
end
def sendEmail()

puts "Emailing #{@email}"
end

end

class Student < Person
def to_s

puts "Name: #{@name}"
end

end

Trace: What is displayed?

p = Person.new("Devin")
p.setupEmail("dev@mines.edu")
s = Student.new("Gene")
p.sendEmail
s.sendEmail

See: ruby_inheritance-1b.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Inheritance and Methods

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Inheritance and Overriding

• Child class can override parent methods
• Methods

• . . . are bound dynamically (when executed)
• . . . not statically (when parsed)

• Methods like to_s and initialize are automatically
inherited (from Object)*

*If you don’t know all of the methods of the parent class, you may
accidentally override a method!

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Language Comparison

• Does Java automatically call parent constructor (‘ctor’)?
• Read

• Compare to C++
• Read

• Questions*

1 In Java, when you do need to explicitly call the parent ctor?
2 In C++, why don’t they use a keyword like super to call the

parent ctor?

*Not exam topics

Ruby Inheritance

https://stackoverflow.com/questions/6318628/when-do-you-need-to-explicitly-call-a-superclass-constructor
https://stackoverflow.com/questions/120876/what-are-the-rules-for-calling-the-superclass-constructor

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Language Comparison

Assume you’re writing a C++ program with:

1 Parent named Bug, child named Mosquito
2 A method in both parent/child named bite

• What do you need to make sure this is bound dynamically?
• What happens if this is not bound dynamically?

• Write a few lines of C++ (on paper) to illustrate

Helpful reminder

Ruby Inheritance

https://stackoverflow.com/questions/2391679/why-do-we-need-virtual-functions-in-c

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Big Picture

Usually, when dealing with an OO language. . .

• Inheritance is a part of the language
• There’s a way to ensure parent/child vars are initialized
• Child classes can call parent class methods
• Child classes can override parent methods

• Runtime: dynamic/late binding
• Compile time: static/early binding

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Override Parent Method
class Person

def initialize(name)
@name = name

end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def introduce

puts "I'm a student and "\
"my name is #{@name}"

end
end

See: ruby_inheritance-2a.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Override Parent Method
class Person

def initialize(name)
@name = name

end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def introduce

puts "I'm a student and "\
"my name is #{@name}"

end
end

joe = Person.new("Joe")
joe.introduce
jamie = Student.new("Jamie")
jamie.introduce

See: ruby_inheritance-2a.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Ruby Method Visibility

1 Public
• Methods are public by default
• initialize is implicitly private (called by new)

2 Private
• Only visible to other methods of the class/subclass
• Implicitly invoked on self

3 Protected
• Like private, but can be invoked on any instance of class
• Allows objects of same type to share state (used infrequently)

These only apply to methods!
Instance vars are private, constants are public

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Method Visibility Example 1

class X
public methods by default
def fn

...
end
protected :fn
def helper

...
end
private :helper

end

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Method Visibility Example 1

class X
public methods by default
def fn

...
end
protected :fn
def helper

...
end
private :helper

end

• Can override visibility (reference)
• private_class_method :new

• private and protected
• Guard against unintended use*

*But, with metaprogramming, it’s possible
to call these methods

Ruby Inheritance

https://en.wikibooks.org/wiki/Ruby_Programming/Syntax/Classes#Private

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Method Visibility Example 2 (1/2)

class Person
def initialize(name)

@name = name
puts "initializing"

end

def talk_to(friend)
puts "Talking to #{@friend}"

end
private :talk_to

end
See: ruby_inheritance-2b.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Method Visibility Example 2 (2/2)

class Person
def initialize(name)

@name = name
puts "initializing"

end

def talk_to(friend)
puts "Talking to #{@friend}"

end
private :talk_to

end

p = Person.new("Yeezy")
p.talk_to("Weezy")

See: ruby_inheritance-2b.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Abstract Class Methods

• Implicitly defined in Ruby
• Parent class calls methods that child must define

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Abstract Class Methods (1/3)

class AbstractGreeter
def greet

puts "#{greeting} #{who}" # call abstract methods
end
def say_hi; puts "Hi!"; end # concrete method

end
class WorldGreeter < AbstractGreeter

def greeting; "Hello"; end
def who; "Jerry"; end

end

See: ruby_inheritance-3.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Abstract Class Methods (2/3)
class AbstractGreeter

def greet
puts "#{greeting} #{who}" # call abstract methods

end
def say_hi; puts "Hi!"; end # concrete method

end
class WorldGreeter < AbstractGreeter

def greeting; "Hello"; end
def who; "Jerry"; end

end

What makes AbstractGreeter an abstract class?

How does this compare to Java? C++?
See: ruby_inheritance-3.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Abstract Class Methods (3/3)

`WorldGreeter` implements methods for `greet`
WorldGreeter.new.greet
cannot call abstract method
AbstractGreeter.new.greet
can call concrete method
AbstractGreeter.new.say_hi

See: ruby_inheritance-3.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Chaining Methods (1/3)

class Person
def initialize(name)

@name = name
end
def introduce

puts "Hi, I'm #{@name}"
end

end
See: ruby_inheritance-4.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Chaining Methods (2/3)

class Person
def initialize(name)

@name = name
end
def introduce

puts "Hi, I'm #{@name}"
end

end

class Student < Person
def initialize(name)

super(name)
@major = major

end
def introduce

super
puts "I'm studying #{@major}"

end
end

See: ruby_inheritance-4.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Chaining Methods (3/3)

p = Person.new("Lauryn")
p.introduce
s = Student.new("Shawn", "Poetry")
s.introduce

See: ruby_inheritance-4.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Class Variables

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Class Variables – Review

• When did we use static class vars in Java/C++?
• Ruby class variables can be used for similar purposes

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Class Variables (1/2)

class Person
def initialize(name)

@name = name
@@thing2 = "water"

end
def show

puts "Person: #{@@thing1}"
end

end

class Student < Person
def make_thing1

@@thing1 = "oil"
end
def show

puts "Student: #{@@thing1}"\
" and #{@@thing2}"

end
end

See: ruby_inheritance-5.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Example: Class Variables (2/2)

a = Person.new("Amy")
b = Student.new("Bob")
create class variable `thing1`
b.make_thing1
b.show
all students can access `thing1`
c = Student.new("Charlie")
c.show
parent cannot access `thing1`
a.show # error

See: ruby_inheritance-5.rb

Ruby Inheritance

Basics Inheritance and Instance Variables Inheritance and Methods Class Variables

Class Instance Variables

May want to explore on your own Class vs. Class-instance variables*
*Not on exam

Ruby Inheritance

https://stackoverflow.com/questions/3802540/difference-between-class-variables-and-class-instance-variables

	Basics
	Inheritance and Instance Variables
	Inheritance and Methods
	Class Variables

