
Ruby Control Flow
CSCI400

29 August 2017

Ruby Control Flow

Color Key

• Clickable URL link
• Write down an answer to this for class participation
• Just a comment – don’t confuse with yellow

Ruby Control Flow

https://www.youtube.com/watch?v=UyoYf7rZVGI

Standard Control Flow

• Selection statements
• Iterative statements
• Unconditional branching
• Not covered: Guarded commands

Ruby Control Flow

Conditionals

if expr1 # newline after expr
code

elsif expr2
code

...
else

code
end # `end` always required

Conditional is executed if expr is not false or nil

Ruby Control Flow

Conditional return value

Return value is last expression executed or nil

x = 5
note the lack of `return`
name = if x == 1 then "Cyndi" else "Nancy" end
puts name

Ruby Control Flow

Expression Modifier

if expr then code end equivalent to code if expr

Best practice: use latter form when expr is trivial or normally true
Perl also has this syntax

Ruby Control Flow

Other conditionals: unless

unless expr
code

end
or
code unless expr

Ruby Control Flow

Other conditionals: case/when

tax = case income
when 0..7550

income * 0.1
when 7550..30650

income * 0.15
when 3065..50000

income * 0.25
else

income * 0.4
end

Compare to ‘switch‘; consider readability

Ruby Control Flow

Iteration

while until

while expr do
code

end
or
code while expr

until expr do
code

end
or
code until expr

Pascal had repeat...until...

Ruby Control Flow

More Iteration

do is optional, can use newline
for var in collection do

code
end

hash.each do |key, value|
puts "#{key} => #{value}"

end

Ruby Control Flow

Iterators

• <int>.times
• 2.times { puts "again!" }

• <enumerable>.each
• array.each { |x| puts x }

• <enumerable>.map
• [5, 10, 15].map { |x| x * x * x }

• <int>.upto, <int>.downto
• factorial = 1; 2.upto(20) { |x| factorial *= x }

• Make use of yield (next slide)

Ruby Control Flow

yield

yield temporarily returns control from iterator to calling method

Exercise

• Trace the code on the next two slides
• Format is flexible

• Draw arrows, etc. Just show you understand
• Discuss when/why might this be useful?

• We’ll discuss as a class

Ruby Control Flow

yield example (1)

yield temporarily returns control from iterator to calling method

def test
puts "You are in the method"
yield
puts "You are back in the method"
yield

end

test { puts "You are in the block" }

Method must be invoked with a block (which is the code that is
yielded to)

Ruby Control Flow

yield example (1)

Result of running code on previous slide:

You are in the method
You are in the block
You are back in the method
You are in the block

Ruby Control Flow

yield example (2)

def test
yield 5
puts "You are in the method 'test'"
yield 100

end

test { |i| puts "You are in the block: #{i}" }

Ruby Control Flow

yield example (2)

You are in the block: 5
You are in the method test
You are in the block: 100

Java: caller controls iteration
Ruby: iterator controls iteration

Ruby Control Flow

Discussion

When/why might yield be useful?

Ruby Control Flow

yield in-class challenge

• Write code similar to ‘yield example 2’ that:
• Displays the modulo 15 of all integers within [100, 91]
• Your yield expression should provide two values

• Hint: in the output below, what changes and what stays the
same?
100 modulo 15 is 10
99 modulo 15 is 9
98 modulo 15 is 8
97 modulo 15 is 7
96 modulo 15 is 6

• Nothing to submit

Ruby Control Flow

Language Design: Importance of Blocks

Read this

Ruby Control Flow

http://www.artima.com/intv/closures.html

