Ruby Data Types
CSCl400

29 August 2017

Color Key

Clickable URL link

Write down an answer to this for class participation
Just a comment — don't confuse with yellow

https://www.youtube.com/watch?v=khMb3k-Wwvg

Array

Array literals/initialization

arr = [1,2,3]

arr2 = [[1,2], [3,4]]

arr3 [8, "lcd", 0.1]

arr4 = (0..10) .to_a # Range -> Array
emptyl = []

empty2 = Array.new

Array.new(5, 0)

zeroes

Array

Arrays are heterogeneous
of elements

arr.length, arr.size

Out of bounds access returns nil
Element accessors are similar to strings
Dynamic resizing

Assign past end of array

|, & for union, intersection

Compare to Java/C++

More Arrays

words = %w(casualties of cool)

["casualties", "of", "cool"]

<< to append
Useful functionality

alphabet = ('A'..'Z').to_a
alphabet.each { |c| print c }

Other methods

clear, empty?, compact!, sort, sort!, pop, push,
reverse, etc.

Symbol

Immutable, interned string (only one copy)
Commonly used as key in hash map
Symbol table

Stores names of classes, methods, variables

More efficient than storing as string
Can be used with reflection

Symbols preferred over strings as unique identifiers
Methods available to convert between string and symbol

Get used to symbols, they're very common

https://en.wikipedia.org/wiki/String_interning

Hashes

AKA maps, associative arrays
Best to use immutable objects as keys

Required sometimes, e.g. Python

Not covered: hash codes

Hashes supported directly in Perl, Python, and Ruby;
supported in class libraries of Java, C++, C#

Hashes
colorsl = { :John => "blue", :Dave => "red" }
colors2 = { "John" => "blue", "Dave" => "red" }
colors3 = { John: "blue", Dave: "red" }

puts colors3[:John]

colors.each do |key, valuel
puts "#{key}'s favorite color is #{valuel}"
end

Array vs. Hash

Which is better if need to access items in order?
Which is useful for direct access?
Hash: useful for ‘paired’ data

Similar to tuples (which Ruby doesn't have built-in)

Range

Purpose

Determine whether value is within range
Iteration

Any object that implements <=> function
<=> similar to Java's CompareTo — why is this needed?
Bounds

1..10 includes 10
1...10 excludes 10

Range

coldware = 1945..1989
coldware.include? birthdate.year

(1..3).to_a # parenthesis required, otherwise just
applies to 3

Subrange introduce in Pascal, also used in Modula-2 and Ada. Others?

Booleans, nil

TrueClass (FalseClass) singleton — write as true (false)
true != 1, false != 0
nil means ‘no value’

Test directly (e.g. x == nil) or with nil? (e.g. x.nil?)

Numeric Types

FixNum
Int operations that fit in a machine word
BigNum
Used for larger integers (FixNum converted automatically)
Float
Floating points values
Complex
Real + imaginary
Rational, e.g. 2/3

