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Color Key

• Clickable URL link
• Write down an answer to this for class participation
• Just a comment – don’t confuse with yellow
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Why do we care?

Could affect:

• Performance
• Reliability

• e.g. Ease of debugging
• Language choice
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Object Lifetime

• Lifetime of a variable
• Time during which the variable is bound to a particular memory

cell
• Ruby built-in objects created when value assigned

• e.g. x = 5
• Other classes create with new

• Factory methods also create objects
• Ruby uses garbage collection

• Destroys objects that are no longer reachable
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Object Lifetimes

1 Static
2 Stack (Dynamic)
3 Explicit heap (Dynamic)
4 Implicit heap (Dynamic)
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Variables by Lifetime: (1) Static

• Bound to memory cells before execution begins
• Not allocated on stack or heap

• Remains bound to same memory throughout execution
• Usage: Similar to global variables, but always local to declaring

file
• Examples

• All FORTRAN 77 variables, C static variables
• But not C++ class variables
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Variables by Lifetime: (1) Static

Example

// `count` allocated here (prior to runtime)
void fn() {

static int count = 0;
count ++;
std::cout << count;

}

fn();
fn();
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Variables by Lifetime: (1) Static

• Advantages
• Efficiency – direct addressing
• A subprogram can use across multiple executions

• Disadvantages
• Bad when value needs to be reinitialized (e.g. recursion)
• Storage can’t be shared betweeen subprograms
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Variables by Lifetime: (2) Stack

• Created when execution reaches code
• Allocated to runtime stack
• Variables may be allocated at beginning of method, even if

declared later
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Variables by Lifetime: (2) Stack

Example

// param, temp, temp2 not allocated here
void fn(int param) {

int temp;
int temp2;
// param, temp, temp2 now allocated

}
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Variables by Lifetime: (2) Stack

• Advantages
• Good when value needs to be reinitialized (e.g. recursion)
• Conserves storage (deallocated once out of scope)

• Disadvantages
• Overhead of allocation/deallocation

• Not too bad, since all memory allocated/deallocated together

• Subprograms cannot be history-sensitive
• Inefficient references – indirect addressing
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Variables by Lifetime: (3) Explicit Heap

• (De)Allocated at runtime by explicit directives
• e.g. new/delete, malloc/free

• Accessed only through pointers or references
• Examples

• Dynamic objets in C++
• All obects in Java
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Variables by Lifetime: (3) Explicit Heap

Examples

void fn1() {
int* nums = new int[5];
// ...

}

public void fn2() {
Point point = new Point();
// ...

}
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Variables by Lifetime: (3) Explicit Heap

• Advantage
• Don’t need to predict exact memory requirements beforehand
• Can modify if needed, e.g. resizing an array

• Disadvantages
• Inefficient – Heap fragmentation (see next slide)
• Unreliable – Dangling pointers, memory leaks
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Heap Fragmentation

Figure 1: Heap fragmentation example
Object Lifetime and Pointers Colorado School of Mines



Object Lifetime Pointers and References

Variables by Lifetime: (4) Implicit Heap

• Basically same as Explicit Heap, except. . .
• No new/delete – these are implied

• Identifiers (often) don’t have explicit types
• x = 3; x = "bob";

• Examples
• All variables in APL
• All strings and arrays in Perl, Javascript
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Variables by Lifetime: (4) Implicit Heap

Examples

# memory allocation (onto heap) + type binding done at
# declaration
list = [2, 4.33, 6, 8]
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Variables by Lifetime: (4) Implicit Heap

• Advantage
• Writeability – Compiler/interpreter handles details
• Flexibility – Types are implicit

• Disadvantages
• Inefficient – Heap fragmentation
• Unreliable – Difficult to detect errors (e.g. type errors)
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Pointers and References
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Pointer Operations (Review)

Two fundamental operations:

1 Assignment – used to set pointer variable’s value to some
useful address

• int *ptr = new int;

2 Dereferencing – yields the value stored at pointer’s address
• *ptr = 206
• int j = *ptr
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Pointers

• Stores a memory address
• Often has special value, e.g. NULL or nil, but not always (Rust)

• Provide means of dynamic memory management
• Can use to access area where storage is dynamically created

(the heap)
• Not necessary for all pointers to reference the heap

• C++ example?
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Pointer to Stack Address

In C/C++, it is not necessary for all pointers to reference the heap:

int x = 5;
int *ptr = &x;
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Pointer Operations

• Dereferencing can be implicit or explicit
• C++ uses an explicit operation, via *

• j = *ptr; // set j to value stored at ptr
• *ptr = 5; // set value stored at ptr to 5

• C++ also does implicit dereferencing of reference variables

void fn(int& x) {
x = 5; // value also changed for caller

}

Object Lifetime and Pointers Colorado School of Mines



Object Lifetime Pointers and References

Pointer Arithmetic in C/C++

float arr[20]
float *ptr;
ptr = &arr;

• ptr is an alias for arr
• *(ptr+i) is equivalent to stuff[i] and ptr[i]
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Pointer Arithmetic in C/C++

Figure 2: Pointer as alias to Array

Object Lifetime and Pointers Colorado School of Mines



Object Lifetime Pointers and References

Pointers in C/C++: void*

• Domain type need not be fixed: void*
• void* can point to any type

• Use typecasts when needed, e.g. (int*)void_ptr ...

• void* cannot be dereferenced
• void* often used in C to pass as arguments (TODO)

• In C++, generally better to use templates so compiler can do
appropriate type-checking
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Question

Do you remember the difference between a dangling pointer and a memory
leak?
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Problems with Pointers (review)

• Dangling pointers
• Pointer pointing to heap-dynamic variable that has been

deallocated
• That memory may have been reallocated
• Value no longer meaningful
• Writing to it could corrupt memory

• Example

Point p = new Point(3, 4);
delete p; // dangling -- p still has address!
std::cout << p.getX(); // bad!
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Problems with Pointers (review)

• Memory leak
• Memory has not been deleted/returned to heap manager
• Inaccesible: No variables contain the address

• When is this a problem?
• One-off programs, small school assignments? No. . .
• Long running programs, e.g. web servers? Yep. . .

int[] p = new int[5000];
p = new int[10000]; // p contains new address
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Reference Types

C++ includes a special kind of pointer typed, called a reference type

• Used primarily for formal parameters
• Constant pointer*that is always implicitly dereferenced

• Notice no * in the code below

void fn(int &y) {
y = y + 1;

}

*What does constant pointer mean?
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Reference Types: Point of confusion

• Constant pointer
• Can’t change where it points
• Can change contents

• Java
• Uses references to objects, but can change address it references
• Implicitly dereferenced
• No pointer arithmetic – Java does not have pointers

• C# has references like Java and pointers like C++
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Pointers vs. References

Broadly speaking:

• Pointers
• Do support pointer arithmetic
• Must be explicitly dereferenced

• References
• Do not support pointer arithmetic
• Are implicitly dereferenced

Mutability of address/contents depends on context
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What about Ruby?

• Does Ruby have references or pointers?
• A: References (read)

• Ruby also has garbage collection (GC)*

*What problem does GC solve? (Dangling pointers, memory leaks?)
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