
Object Lifetime Pointers and References

Object Lifetime and Pointers
CSCI 400

Colorado School of Mines

31 August 2017

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Color Key

• Clickable URL link
• Write down an answer to this for class participation
• Just a comment – don’t confuse with yellow

Object Lifetime and Pointers Colorado School of Mines

https://www.youtube.com/watch?v=8FEFClgA37E

Object Lifetime Pointers and References

Object Lifetime

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Why do we care?

Could affect:

• Performance
• Reliability

• e.g. Ease of debugging
• Language choice

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Object Lifetime

• Lifetime of a variable
• Time during which the variable is bound to a particular memory

cell
• Ruby built-in objects created when value assigned

• e.g. x = 5
• Other classes create with new

• Factory methods also create objects
• Ruby uses garbage collection

• Destroys objects that are no longer reachable

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Object Lifetimes

1 Static
2 Stack (Dynamic)
3 Explicit heap (Dynamic)
4 Implicit heap (Dynamic)

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (1) Static

• Bound to memory cells before execution begins
• Not allocated on stack or heap

• Remains bound to same memory throughout execution
• Usage: Similar to global variables, but always local to declaring

file
• Examples

• All FORTRAN 77 variables, C static variables
• But not C++ class variables

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (1) Static

Example

// `count` allocated here (prior to runtime)
void fn() {

static int count = 0;
count ++;
std::cout << count;

}

fn();
fn();

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (1) Static

• Advantages
• Efficiency – direct addressing
• A subprogram can use across multiple executions

• Disadvantages
• Bad when value needs to be reinitialized (e.g. recursion)
• Storage can’t be shared betweeen subprograms

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (2) Stack

• Created when execution reaches code
• Allocated to runtime stack
• Variables may be allocated at beginning of method, even if

declared later

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (2) Stack

Example

// param, temp, temp2 not allocated here
void fn(int param) {

int temp;
int temp2;
// param, temp, temp2 now allocated

}

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (2) Stack

• Advantages
• Good when value needs to be reinitialized (e.g. recursion)
• Conserves storage (deallocated once out of scope)

• Disadvantages
• Overhead of allocation/deallocation

• Not too bad, since all memory allocated/deallocated together

• Subprograms cannot be history-sensitive
• Inefficient references – indirect addressing

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (3) Explicit Heap

• (De)Allocated at runtime by explicit directives
• e.g. new/delete, malloc/free

• Accessed only through pointers or references
• Examples

• Dynamic objets in C++
• All obects in Java

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (3) Explicit Heap

Examples

void fn1() {
int* nums = new int[5];
// ...

}

public void fn2() {
Point point = new Point();
// ...

}

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (3) Explicit Heap

• Advantage
• Don’t need to predict exact memory requirements beforehand
• Can modify if needed, e.g. resizing an array

• Disadvantages
• Inefficient – Heap fragmentation (see next slide)
• Unreliable – Dangling pointers, memory leaks

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Heap Fragmentation

Figure 1: Heap fragmentation example
Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (4) Implicit Heap

• Basically same as Explicit Heap, except. . .
• No new/delete – these are implied

• Identifiers (often) don’t have explicit types
• x = 3; x = "bob";

• Examples
• All variables in APL
• All strings and arrays in Perl, Javascript

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (4) Implicit Heap

Examples

memory allocation (onto heap) + type binding done at
declaration
list = [2, 4.33, 6, 8]

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Variables by Lifetime: (4) Implicit Heap

• Advantage
• Writeability – Compiler/interpreter handles details
• Flexibility – Types are implicit

• Disadvantages
• Inefficient – Heap fragmentation
• Unreliable – Difficult to detect errors (e.g. type errors)

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointers and References

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointer Operations (Review)

Two fundamental operations:

1 Assignment – used to set pointer variable’s value to some
useful address

• int *ptr = new int;

2 Dereferencing – yields the value stored at pointer’s address
• *ptr = 206
• int j = *ptr

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointers

• Stores a memory address
• Often has special value, e.g. NULL or nil, but not always (Rust)

• Provide means of dynamic memory management
• Can use to access area where storage is dynamically created

(the heap)
• Not necessary for all pointers to reference the heap

• C++ example?

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointer to Stack Address

In C/C++, it is not necessary for all pointers to reference the heap:

int x = 5;
int *ptr = &x;

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointer Operations

• Dereferencing can be implicit or explicit
• C++ uses an explicit operation, via *

• j = *ptr; // set j to value stored at ptr
• *ptr = 5; // set value stored at ptr to 5

• C++ also does implicit dereferencing of reference variables

void fn(int& x) {
x = 5; // value also changed for caller

}

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointer Arithmetic in C/C++

float arr[20]
float *ptr;
ptr = &arr;

• ptr is an alias for arr
• *(ptr+i) is equivalent to stuff[i] and ptr[i]

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointer Arithmetic in C/C++

Figure 2: Pointer as alias to Array

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointers in C/C++: void*

• Domain type need not be fixed: void*
• void* can point to any type

• Use typecasts when needed, e.g. (int*)void_ptr ...

• void* cannot be dereferenced
• void* often used in C to pass as arguments (TODO)

• In C++, generally better to use templates so compiler can do
appropriate type-checking

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Question

Do you remember the difference between a dangling pointer and a memory
leak?

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Problems with Pointers (review)

• Dangling pointers
• Pointer pointing to heap-dynamic variable that has been

deallocated
• That memory may have been reallocated
• Value no longer meaningful
• Writing to it could corrupt memory

• Example

Point p = new Point(3, 4);
delete p; // dangling -- p still has address!
std::cout << p.getX(); // bad!

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Problems with Pointers (review)

• Memory leak
• Memory has not been deleted/returned to heap manager
• Inaccesible: No variables contain the address

• When is this a problem?
• One-off programs, small school assignments? No. . .
• Long running programs, e.g. web servers? Yep. . .

int[] p = new int[5000];
p = new int[10000]; // p contains new address

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Reference Types

C++ includes a special kind of pointer typed, called a reference type

• Used primarily for formal parameters
• Constant pointer*that is always implicitly dereferenced

• Notice no * in the code below

void fn(int &y) {
y = y + 1;

}

*What does constant pointer mean?

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Reference Types: Point of confusion

• Constant pointer
• Can’t change where it points
• Can change contents

• Java
• Uses references to objects, but can change address it references
• Implicitly dereferenced
• No pointer arithmetic – Java does not have pointers

• C# has references like Java and pointers like C++

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

Pointers vs. References

Broadly speaking:

• Pointers
• Do support pointer arithmetic
• Must be explicitly dereferenced

• References
• Do not support pointer arithmetic
• Are implicitly dereferenced

Mutability of address/contents depends on context

Object Lifetime and Pointers Colorado School of Mines

Object Lifetime Pointers and References

What about Ruby?

• Does Ruby have references or pointers?
• A: References (read)

• Ruby also has garbage collection (GC)*

*What problem does GC solve? (Dangling pointers, memory leaks?)

Object Lifetime and Pointers Colorado School of Mines

https://stackoverflow.com/questions/7208768/is-it-possible-to-use-pointers-in-ruby

	Object Lifetime
	Pointers and References

