
Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Language Principles
CSCI 400 – Lecture 1

Colorado School of Mines

24 August 2017

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Binding

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

The Concept of Binding

• Binding: an association/mapping
• Type to variable: int x
• Operation to symbol: x * y, *ptr
• Function to definition: int main() { ... }

• Binding time: time at which binding takes place
• Bindings may be

• Static or dynamic
• explicit or implicit

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Possible Binding Times (1)

• Language design time
• Bind operator symbol (e.g. +) to meaning/operation

• sum = sum + count
• sum = "Hello" + name

• Language implementation time
• Bind type to representation

• char → 8 bits, etc.

• Compile time
• Bind variable to type

• int sum

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Possible Binding Times (2)

• Link time
• Bind library subprogram to code

• std::cout << x

• Load time
• Bind a C static variable to memory address

• Runtime
• Bind a non-static local variable to a memory address

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Static vs. Dynamic Binding

• A static binding…
1 First occurs before runtime
2 and remains unchanged throughout execution

• A dynamic binding…
1 First occurs during execution
2 or it can change during execution

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Static vs. Dynamic

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Static vs. Dynamic: Usage

Show up in various contexts:

• Variable typing
• Variable lifetime
• Variable scope
• Polymorphism

• Overloaded operators vs. late binding

Not to be confused with ‘static‘ keyword used in OO

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Dynamic Type Binding

• Type not specified by declaration
• Javascript, PHP, Ruby, Python

• Specified through assignment statement
• list = [2, 4.33, 10, 15]
• list = 17.3

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Dynamic Type Binding

• Advantages
• Flexibility (generics)

• e.g. Duck typing

• Disadvantages
• High cost (run-time descriptors)
• Compiler can miss many type errors

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explore Generics

• Read this:
• https://en.wikipedia.org/wiki/Generics_in_java

• With a partner
• Read the definition of a type variable
• Look at how List is defined (section: Motivation)

• What is the type variable? How is it used?
• Read/understand the Entry class (section: Generic class

definitions)

Language Principles Colorado School of Mines

https://en.wikipedia.org/wiki/Generics_in_java


Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explore Generics

• Read this:
• http://www.tutorialspoint.com/cplusplus/cpp_templates.htm

• Discuss the Stack example
• Syntax not important, but understand templates/their purpose

Language Principles Colorado School of Mines

http://www.tutorialspoint.com/cplusplus/cpp_templates.htm


Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Assume you’re desigining a language with dynamic typing

• How would you implement dynamic types?
• What data structure(s) would you use?

• How does this impact code in this language?
• Consider efficiency, reliability

• Now consider challenges with +
• total = 3 + 5
• message = "hello " + "world"
• something = "count" + 3 + 5
• Would these be a challenge for either a compiler or runtime

system?

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Dynamic Typing Reliability

Issue

i = x # desired, x is scalar
i = y # typed accidentally, y is array

• Possibly very difficult to find source of error
• Well-implemented static typing can catch this

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Strong vs Weak Typing

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Definitions

Definitions of strong/weak typing are not precise.

• Strong typing
• Generally, compiler error if value does not meet expected type
• Dynamically typed language: might be considered strongly

typed if type errors are prevented at runtime
• Weak typing

• Types can be used interchangeably

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Features regarded as ‘weaker’

• Implicit type conversations
• Pointers*
• Untagged unions*

*covered later

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Type Conversions

• Widening conversions
• Exact or close-approximation to all of values in original type
• byte → short → int → long → float → double

• Narrowing conversions
• Cannot include all values of original type
• double → float → long → int → short → byte

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Type Conversions: Dangerous?

• Widening conversions may lose accuracy
• 32-bit int → 32-bit float (Lose 2 digits of precision, float

uses 8 bits for exponent)
• Conversions should be used with care

• Warnings should not be ignored
• Strongly typed languages minimize implicit type conversions

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Implicit Type Conversions

• Language will try to convert types behind-the-scenes if
necessary

• Programmer must be aware
• Compiler/interpreter should inform programmer

• More implicit type conversions → considered more weakly
typed

• C supports more implicit conversions than Java

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explore Implicit Conversions

http://en.cppreference.com/w/cpp/language/implicit_conversion

• Write a line of code that illustrates one of the scenarios
• Section: Array to pointer conversion

• Draw a picture and 1-2 lines of code that illustrate
• e.g. code might show how to access a value before and after

conversion

Language Principles Colorado School of Mines

http://en.cppreference.com/w/cpp/language/implicit_conversion


Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explore Implicit Conversions

https://www.securecoding.cert.org/confluence/pages/viewpage.
action?pageId=3416

• Did you know: C++ will do an implicit conversion if there is a
single-arg constructor that will do the needed conversion?

Language Principles Colorado School of Mines

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3416
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3416


Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

More on Types

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Type Safety

• The extent to which a PL discourages/prevents type errors
• Type error

• Erroneous or undesirable program behavior
• Caused by discrepancy between different data types
• e.g. passing int to function that expects a string

• Type enforcement
• Static: compile time
• Dynamic: runtime

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explicit vs. Implicit

• Explicit: stated by programmer
• Implicit: determined by language
• Contexts

• Type declaration
• Variable lifetime

Note: These are not the same as static/dynamic.

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Explicit/Implicit Declaration

• Explicit declaration
• Program statement used for declaring variable types.

• int count;

• Implicit declaration
• Default mechanism for specifying variable types.

• Both create static bindings to types
• Type doesn’t change during execution

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Implicit Declaration

• Dynamic typing (e.g. Python, Ruby, Lisp)
• No type annotations
• Typechecking at runtime
• Writeability at the cost of Reliability

• Static type-inference (e.g. Haskell, Rust, OCaml)
• Optional type annotations
• Compiler type-checks program
• Balance between writeability and reliability

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Other Concepts

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Keywords vs. Reserved Words

Keyword

• Has a special meaning in a particular context
• Can be used as a variable name
• Older languages

• Algol, PL/I, Fortran

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Keywords vs. Reserved Words

Reserved

• Can’t be used as variable name
• COBOL has ~400, Java has ~50
• Advantage: May avoid confusion
• Disadvantage: Awareness of language parts you aren’t even

using

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Keywords vs. Reserved Words

• Potentially valid Fortran:
• if if then then else else

• Java: goto is…
• Reserved (you can’t use it)
• Not a keyword (language doesn’t use it)

• Functions in libraries are neither keywords nor reserved words
• Can sometimes cause confusion

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Unconditional Branching

• Transfers execution control to specified place in program
• Topic of one of the most heated debates in 1960s/70s
• Well-known mechanism: goto

• Concern: Readability, reliability (maintenance)
• Most modern languages do not have goto

• Languages with goto
• Assembly languages, C
• C# – limited to switch statements

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Links

• Tony Hoare on the harm of NULL
• This page might be kind of confusing – you want the video on

the top right
• Edgar Dijkstra on the harm of goto

Language Principles Colorado School of Mines

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.u.arizona.edu/~rubinson/copyright_violations/Go_To_Considered_Harmful.html

	Binding
	Static vs. Dynamic
	Strong vs Weak Typing
	More on Types
	Other Concepts

