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The Concept of Binding

• Binding: an association/mapping
• Type to variable: int x
• Operation to symbol: x * y, *ptr
• Function to definition: int main() { ... }

• Binding time: time at which binding takes place
• Bindings may be

• Static or dynamic
• explicit or implicit
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Possible Binding Times (1)

• Language design time
• Bind operator symbol (e.g. +) to meaning/operation

• sum = sum + count
• sum = "Hello" + name

• Language implementation time
• Bind type to representation

• char → 8 bits, etc.

• Compile time
• Bind variable to type

• int sum
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Possible Binding Times (2)

• Link time
• Bind library subprogram to code

• std::cout << x

• Load time
• Bind a C static variable to memory address

• Runtime
• Bind a non-static local variable to a memory address
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Static vs. Dynamic Binding

• A static binding…
1 First occurs before runtime
2 and remains unchanged throughout execution

• A dynamic binding…
1 First occurs during execution
2 or it can change during execution
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Static vs. Dynamic
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Static vs. Dynamic: Usage

Show up in various contexts:

• Variable typing
• Variable lifetime
• Variable scope
• Polymorphism

• Overloaded operators vs. late binding

Not to be confused with ‘static‘ keyword used in OO
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Dynamic Type Binding

• Type not specified by declaration
• Javascript, PHP, Ruby, Python

• Specified through assignment statement
• list = [2, 4.33, 10, 15]
• list = 17.3

Language Principles Colorado School of Mines



Binding Static vs. Dynamic Strong vs Weak Typing More on Types Other Concepts

Dynamic Type Binding

• Advantages
• Flexibility (generics)

• e.g. Duck typing

• Disadvantages
• High cost (run-time descriptors)
• Compiler can miss many type errors
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Explore Generics

• Read this:
• https://en.wikipedia.org/wiki/Generics_in_java

• With a partner
• Read the definition of a type variable
• Look at how List is defined (section: Motivation)

• What is the type variable? How is it used?
• Read/understand the Entry class (section: Generic class

definitions)
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Explore Generics

• Read this:
• http://www.tutorialspoint.com/cplusplus/cpp_templates.htm

• Discuss the Stack example
• Syntax not important, but understand templates/their purpose
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Assume you’re desigining a language with dynamic typing

• How would you implement dynamic types?
• What data structure(s) would you use?

• How does this impact code in this language?
• Consider efficiency, reliability

• Now consider challenges with +
• total = 3 + 5
• message = "hello " + "world"
• something = "count" + 3 + 5
• Would these be a challenge for either a compiler or runtime

system?
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Dynamic Typing Reliability

Issue

i = x # desired, x is scalar
i = y # typed accidentally, y is array

• Possibly very difficult to find source of error
• Well-implemented static typing can catch this
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Strong vs Weak Typing
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Definitions

Definitions of strong/weak typing are not precise.

• Strong typing
• Generally, compiler error if value does not meet expected type
• Dynamically typed language: might be considered strongly

typed if type errors are prevented at runtime
• Weak typing

• Types can be used interchangeably
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Features regarded as ‘weaker’

• Implicit type conversations
• Pointers*
• Untagged unions*

*covered later
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Type Conversions

• Widening conversions
• Exact or close-approximation to all of values in original type
• byte → short → int → long → float → double

• Narrowing conversions
• Cannot include all values of original type
• double → float → long → int → short → byte
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Type Conversions: Dangerous?

• Widening conversions may lose accuracy
• 32-bit int → 32-bit float (Lose 2 digits of precision, float

uses 8 bits for exponent)
• Conversions should be used with care

• Warnings should not be ignored
• Strongly typed languages minimize implicit type conversions
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Implicit Type Conversions

• Language will try to convert types behind-the-scenes if
necessary

• Programmer must be aware
• Compiler/interpreter should inform programmer

• More implicit type conversions → considered more weakly
typed

• C supports more implicit conversions than Java
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Explore Implicit Conversions

http://en.cppreference.com/w/cpp/language/implicit_conversion

• Write a line of code that illustrates one of the scenarios
• Section: Array to pointer conversion

• Draw a picture and 1-2 lines of code that illustrate
• e.g. code might show how to access a value before and after

conversion
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Explore Implicit Conversions

https://www.securecoding.cert.org/confluence/pages/viewpage.
action?pageId=3416

• Did you know: C++ will do an implicit conversion if there is a
single-arg constructor that will do the needed conversion?
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More on Types
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Type Safety

• The extent to which a PL discourages/prevents type errors
• Type error

• Erroneous or undesirable program behavior
• Caused by discrepancy between different data types
• e.g. passing int to function that expects a string

• Type enforcement
• Static: compile time
• Dynamic: runtime
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Explicit vs. Implicit

• Explicit: stated by programmer
• Implicit: determined by language
• Contexts

• Type declaration
• Variable lifetime

Note: These are not the same as static/dynamic.
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Explicit/Implicit Declaration

• Explicit declaration
• Program statement used for declaring variable types.

• int count;

• Implicit declaration
• Default mechanism for specifying variable types.

• Both create static bindings to types
• Type doesn’t change during execution
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Implicit Declaration

• Dynamic typing (e.g. Python, Ruby, Lisp)
• No type annotations
• Typechecking at runtime
• Writeability at the cost of Reliability

• Static type-inference (e.g. Haskell, Rust, OCaml)
• Optional type annotations
• Compiler type-checks program
• Balance between writeability and reliability
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Other Concepts
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Keywords vs. Reserved Words

Keyword

• Has a special meaning in a particular context
• Can be used as a variable name
• Older languages

• Algol, PL/I, Fortran
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Keywords vs. Reserved Words

Reserved

• Can’t be used as variable name
• COBOL has ~400, Java has ~50
• Advantage: May avoid confusion
• Disadvantage: Awareness of language parts you aren’t even

using
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Keywords vs. Reserved Words

• Potentially valid Fortran:
• if if then then else else

• Java: goto is…
• Reserved (you can’t use it)
• Not a keyword (language doesn’t use it)

• Functions in libraries are neither keywords nor reserved words
• Can sometimes cause confusion
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Unconditional Branching

• Transfers execution control to specified place in program
• Topic of one of the most heated debates in 1960s/70s
• Well-known mechanism: goto

• Concern: Readability, reliability (maintenance)
• Most modern languages do not have goto

• Languages with goto
• Assembly languages, C
• C# – limited to switch statements
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Links

• Tony Hoare on the harm of NULL
• This page might be kind of confusing – you want the video on

the top right
• Edgar Dijkstra on the harm of goto
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