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Outline

= Polymorphically statically typed
= Lazy
= Purely functional
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Type System

= Polymorphic
= Static typing
= Strong typing
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Properties

Type System

Polymorphism

@® Parametric polymorphism

= Unconstrained type variables
= eg. id :: a -> a

® Ad-hoc polymorphism

= Constrained type variables
» eg sort :: Ord a => [a] —-> [a]
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Properties

Type System

Static typing

= Type-checking happens at compile time
= Efficient

= No runtime type-checks
= Known memory requirements
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Type System

Strong typing

= No implicit type conversions. . .
= ...but does have type inference and polymorphism
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Lazy

= Evaluation only when needed
>x =1 "div- O
> print x
**x Exception: divide by zero
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Lazy

= Save computation time
= More modular and expressive

Disadvantages

= Memory usage less predictable
= Might slow down execution
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Purely Functional

= Pure: prohibits side effects
= Functions operating on immutable data
= Referential transparency

= Lazy evaluation
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Ecosystem
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Tools

« GHC
» Stack
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GHC

= Standard compiler for Haskell
= Simon Peyton Jones, Simon Marlow
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Stack

= Development environment for Haskell
= Package management, testing, ...
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History
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From the man himself. ..

Click
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https://youtu.be/re96UgMk6GQ?t=3m36s

My Haskell Projects

My Haskell Projects
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My Haskell Projects

Elements of Computing Systems

= Compiler for Jack (Java-like language)

= Jack - VM
= VM — assembly language

= Only group using Haskell
= Python, Java, Ruby, ...
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My Haskell Projects

Compiler: Benefits of Haskell

= Parsec (‘'Parser combinators’)

= Build complex parsers from simple ones
= Practical intro to more esoteric Haskell

= Relatively minimal Haskell knowledge

= Result still fairly robust
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My Haskell Projects

Imperative Language Interpreter

= Direct execution (instead of compiling)
= Expressiveness
exec (IfStmt condition stmtl stmt2) env

| condition = exec stmtl env
| otherwise = exec stmt2 env
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My Haskell Projects

Other Projects

= Decoy routing
= Game-theoretic simulation
= Movie suggestion script

= Filter movies based on genre/etc.
= Spit out random movie from result

= Todo-list manager

= Add task, schedule task, ...
= taskwarrior
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Why care about Haskell?

Why care about Haskell?
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Why care about Haskell?

XKCD

CODE WRITTEN IN HASKELL
15 GUARANTEED To HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?




Why care about Haskell?

Motivation

= Expressive

= Fewer runtime bugs
= Easier to debug

= Easier to maintain
= Code reuse

Haskell — Overview David Grisham



Why care about Haskell?

Worst practices should be difficult

= Sensible defaults in Haskell

= Maybe/Nothing over NULL/None
= |Immutability
* Minimal I0
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Why care about Haskell?

Programming Paradigm

= Informs how you think about coding
= Very useful to broaden
= Better code in other languages
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Why care about Haskell?

Coming Up With Haskell Projects

Challenge isn't “what can | do in Haskell”

Challenge is "how can | do X in Haskell”
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Further Reading

Further Reading
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Further Reading

Links (articles)

= Beating the Averages
= Competitive advantage in programming language choice
= Worst practice should be hard

* Long-term language productivity
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http://paulgraham.com/avg.html
http://www.haskellforall.com/2016/04/worst-practices-should-be-hard.html

Further Reading

Links (paper and talk)

= Von Neumann vs. Functional Languages

= First 10 pages, more if you want
= Functional Programming Design Patterns

= Straightforward explanations of functional advantages
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http://wwwusers.di.uniroma1.it/~lpara/LETTURE/backus.pdf
https://www.youtube.com/watch?v=E8I19uA-wGY

Further Reading

Links (learning resources)

= Real World Haskell
= Brian O'Sullvian, et al.
= Stanford 240h: Functional Systems in Haskell

= David Mazieres and Brian O'Sullvian
= All resources available (except lecture vids)

= /r/haskell

= Consistently worthwhile content here
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http://book.realworldhaskell.org/read/
http://www.scs.stanford.edu/16wi-cs240h/
https://www.reddit.com/r/haskell
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