
Higher-Order Functions

Currying

Consider a single-argument function with the type signature:
f :: Char -> Int

When you call f on some Char, you get an Int result. You can think of this as
filling in the Char argument of function f.

Likewise, if we had a function with two arguments and one output:
add :: Num a => a -> a -> a
add x y = x + y

We call this function by filling in both of the arguments:
add 3 4

This is the same as writing:
(add 3) 4

The add 3 is a partially applied function that has the type Int -> Int. This
means that we could do the following:
addThree :: Int -> Int
addThree = add 3

This works because functions in Haskell are curried, which means they take in
a single argument at a time and produce a new function as a result (then that
new function might accept another argument, and so on).

Here’s another example of currying:
maxZero :: (Num a, Ord a) :: a -> a
maxZero = max 0

Consider the type signature of max:
max :: Ord a => a -> a

Notice that the type variable in the signature for maxZero is more constrained
than the type variable for max – the type of the input to maxZero has to be
both a Num and and Ord, rather than just an Ord. When we partially applied
the function by writing max 0, we put a further constraint on the future inputs
(namely that the next input had to also be a Num, since 0 is a Num).

Here’s an example of a partially applied function used with map:

map (*3) [1, 2, 3]
=> [3, 6, 9]

1



Here, the partially applied function is (*), which we provided with a single
argument, 3.

We could also write a function that triples the elements of any list:
tripleMap = map (*3)

Consider a call to this function:
tripleMap [1, 2, 3]

Thanks to referential transparency, we can replace tripleMap with its definition
to get a better idea of how this works:

tripleMap [1, 2, 3]
=> map (*3) [1, 2, 3]

Question

What is the type of tripleMap?

Answer:
tripleMap :: Num a => [a] -> [a]

This is another case where the partial function application restricted the function
signature a bit, in this case forcing the types of the elements of the input/output
lists to satisify the Num typeclass.

filter

Let’s look at one more useful higher-order function, filter:
filter :: (a -> Bool) -> [a] -> [a]

Consider the type signature, along with the following example calls:

filter (> 3) [1,2,3,4,5]
=> [4, 5]

filter even [10,9..0]
=> [10, 8, 6, 4, 2, 0]

2


	Higher-Order Functions
	Currying
	Question

	filter


