Polymorphism

Lists

Continued from previous

Recall the data constructors for a [a] (list):

0 :: [al
(:) :: a-> [a] —> [a]

head and tail

Let’s look at a few common list functions, and see how we can use pattern
matching to define them.

head :: [a] —> a
tail :: [a] -> [a]

Question

What do you think these functions do?
Answer:

e head returns first element of list
e tail returns all of list after first element

head (x:xs)
tail (x:xs)

X

X8

Think about the pattern matching we did with other constructors, like
Succ Peano, Point Float Float, and tuples (e.g. (x, y)). We're doing the
same thing here, except the constructor is now the infix operator :, so it looks
kind of funny.

We can, of course, ignore some of these values on the LHS:

head :: [a] —> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = [

Let’s consider a few calls to these (these are reductions, not valid Haskell):

head [3, 4] => head (3:[4]) => 3
tail [3, 4] => tail (3:[4]) => 4



head [3] => head (3:[]) => 3
tail [3] => tail (3:[]) => []

More Pattern Matching Examples

TODO

Polymorphic Data Types
List
data List a = Nil | Cons a (List a)

Question

What are the types of the List constructors we just wrote?

Answer:
Nil :: List a
Cons :: a -> List a -> List a

Compare these to the constructors for [a]:

0 :: [al
(:) :: a-> [a] -> [a]

So the constructors we wrote have the properties:

e Nil is the ‘zero value’ for the List a type

e Cons a (List a) means that the Cons constructor has two arguments:
1. A value of any type (represented by the first a)
2. A List a, where a is of the same type as the first a

The second constructor looks confusing, but just remember that the definition
of a data constructor consists of an identifier (Cons, in this case) followed by
a sequence of the types of the values that can be used as arguments to the
constructor.

Constructing a List a



empty :: List a
empty = Nil

emptyInt :: List Int
emptyInt = Nil

ints :: List Int
ints = Cons 1 (Cons 2 Nil) -- amalogous to [1, 2]

Question

How would you write the head and tail functions that we write for [a] for our
List a type? (Call them headList and taillist.)

Answer:

headlList :: List a -> a
headList (Cons x _) = x

taillist :: List a -> List a
taillList (Cons _ xs) = Xs
taillist Nil = Nil

Notice that our headList function does not handle the Nil case (just as the
head function does not handle the [1 case). We’ll explore this more in the
homework.



	Polymorphism
	Lists
	head and tail
	Question

	More Pattern Matching Examples

	Polymorphic Data Types
	List
	Question
	Constructing a List a
	Question



