
Polymorphism

Identity Function

id :: a -> a

• a is a type variable – can be of any type
• This id function accepts a parameter of any type, and returns something

of the same type (once a type is bound to the first (input) a, the second
(output) a is bound to that same type)

Consider a call to this function:
x = id "Ih-Ah!"

In this specific call:

• The type variable a will be bound to the type String
• as a result, x’s type will also be String

Question

The id function stands for ‘identity’. Can you guess what the body of the
function is?

Hint:

1. Input is of any type
2. Output is of same type as input
3. id knows/assumes nothing of the input type
4. So what could id possibly return?

Answer:
id :: a -> a
id x = x

Tuples

We previously defined a Point type as:
data Point = Point Float Float

This is one way to do ‘collection’. Another way is to use a tuple:
type Point = (Float, Float)

This might be weird to look at, but remember: the thing on the RHS, (Float,
Float){.hs}, is a type.

1



We could construct a value of this type as follows:
point :: Point -- same as `point :: (Float, Float)`
point = (1.2, 3.4)

Polymorphic Tuples

Consider the function:
fst :: (a, b) -> a

By looking at fst‘{.hs}’s type signature, we can see that:

• Input: A tuple containing two values of any type
• Output: The type of the first element of the input tuple

Question

What does the body of fst look like?

Answer:
fst :: (a, b) -> a
fst (x, _) = x

Question

Now consider a function snd that returns the second element of a tuple:
snd (_, y) = y

What should snd’s type signature look like?

Answer:
snd :: (a, b) -> b

Lists

Type type of an ArrayList of Ints in Java would look like:
ArrayList<Int>

The type of a list of Ints in Haskell looks like:
[Int] -- read as 'list of `Int`s'

An example of constructing such a list:

2



l :: [Int]
l = [1, 2, 3]

We could replace the Int above with any type, because a list can hold anything.
In Java, we could represent this with:
ArrayList<T>

where T is a type variable denoting the fact that ArrayList can hold any type.

The same idea in Haskell is expressed as:
[a] -- read this as 'list containing elements of any type'

where a is the type variable (equivalent of T in the Java example).

Constructing Lists

As noted above, we can create a list like this:
l :: [Int]
l = [1, 2, 3]

The [1, 2, 3] is just syntactic sugar for 1:2:3:[], so the following has the
same effect:
l :: [Int]
l = 1 : 2 : 3 : []

Think of it like this: The list type in Haskell has two constructors. The first is
[], which creates an empty list. This is akin to the Zero constructor that we
used for the Peano data type. The type of [] is:
[] :: [a]

We could create a value containing the empty list by:
empty = []

The second constructor is :, and its type is:
-- the parenthesis are needed since `:` is a symbol
(:) :: a -> [a] -> [a]

: is an infix operator, just like +, which means it’s a function that appears
between its arguments.

Let’s go back to:
l :: [Int]
l = 1 : 2 : 3 : []

3



The : operator is right-associative, which means the function applications take
place like:
l :: [Int]
l = 1 : (2 : (3 : []))

You can think of the : operator as doing something like this (note: the following
is not valid haskell):

x0 : [x1, x2, ...] = [x0, x1, x2, ...]

So : simply prepends the LHS value to the RHS list.

Now we can follow the functions calls (again, not quite valid Haskell):

l = 1 : (2 : (3 : []))
= 1 : (2 : [3])
= 1 : [2, 3]
= [1, 2, 3]

4


	Polymorphism
	Identity Function
	Question

	Tuples
	Polymorphic Tuples
	Question
	Question

	Lists
	Constructing Lists



