
Haskell – Assignment 3

This assignment is worth 50 points.

Notes:

• You must write type signatures for all functions/values you define. If you’re
ever confused about what the best type signature for a function might be,
try defining the function body without the type signature, then load your
file into ghci and run :t <function> to see what type GHC infers for your
function <function>.

• This assignment will be graded with unit tests, so for each problem be sure
you use the exact function name given in the problem statement
to define your function.

• No credit will be given if you submit an assignment that will not load
the test file. So, if you cannot figure out how to define a function, set the
right-hand side of your function to undefined. Example: myFunc =
undefined.

• Please download this source file and add your answers to it. Do not change
the name of the file. This is the file you should submit when you’re finished.
This is also linked in the schedule on the course website if the link here
doesn’t work.

• Problems 1-3 are due Tuesday, November 7 at midnight on Can-
vas.

• Problem 4 is due Thursday, November 9 in class.
• If you’re confused about how to fit certain functions together, look at the

type signatures! That’s one of the most useful tools you have when using
Haskell.

1

./Assignment3.hs


Problem 1 – map and filter (12 pts.)

4 pts. each

The source file included with this assignment contains the following data decla-
ration for a datatype called Artist:
data Artist = Artist Name Genres

deriving Show
type Name = String
type Genres = [Genre]
type Genre = String

Recall that the type keyword declares a type synonym.

The Artist type represents a solo musician or band and has a single constructor
which takes two arguments: the name of the artist and a list of genres associated
with that artist.

In the example output for the problems below, assume the following value
bindings have been declared (these are also in the provided source file):
band :: Artist
band = Artist "Talking Heads" ["New Wave", "Post Punk", "Pop Rock", "Funk Rock"]

artists :: [Artist]
artists = [

Artist "Talking Heads" ["New Wave", "Post Punk", "Pop Rock", "Funk Rock"],
Artist "Devin Townsend" ["Progressive Metal", "Ambient", "New Wave"],
Artist "Brand New" ["Pop Punk", "Emo", "Alternative Rock", "Indie Rock"],
Artist "Brian Eno" ["Art Rock", "Ambient", "Electronic"],
Artist "The Front Bottoms" ["Indie Rock", "Folk Punk", "Anti-Folk"],
Artist "Grimes" ["Electropop", "Dream Pop", "Synthpop"],
Artist "My Bloody Valentine" ["Shoegaze", "Noise Pop", "Post Punk"],
Artist "David Bowie" ["Art Rock", "Pop Rock", "Glam Rock", "New Wave"]

]

a. getName, getGenres

Write two functions, getName and getGenres, that each accept an Artist and
return the artist’s name and list of genres, respectively.

> getName band
"Talking Heads"

> getGenres band
["New Wave", "Post Punk", "Pop Rock", "Funk Rock"]

2



b. getSortedNames

Write a function called getAllArtistNames that accepts a list of Artists and
returns a sorted list of all of the artists’ names. You must use map in your
answer. This is also a good opportunity to practice function composition with .,
but you’re not required to.

Note: You’ll want to import the sort file from Data.List. We haven’t discussed
importing in lecture, but Chapter 7 of the book gives an overview of it.

getSortedNames artists
> ["Brand New","Brian Eno","David Bowie","Devin Townsend",

"Grimes","My Bloody Valentine","Talking Heads",
"The Front Bottoms"]

c. filterByGenre

Write a function called filterByGenre that accepts a list of Artists and a
single genre string and returns all of the Artists with that genre. You must use
the filter function in your answer.

> filterByGenre artists "New Wave"
[Artist "Talking Heads" ["New Wave","Post Punk","Pop Rock","Funk Rock"],
Artist "Devin Townsend" ["Progressive Metal","Ambient","New Wave"],
Artist "David Bowie" ["Art Rock","Pop Rock","Glam Rock","New Wave"]]

> filterByGenre artists "Deathcore"
[]

3



Problem 2 – $ and . (6 pts.)

a. Function Application with $ (4 pts.)

Write a function called multTableRow that accepts an Int and returns one row
of a multiplication table. You must use the $ operator in your answer (check
out Chapter 6 of the textbook, it has a good example of that).

> multTableRow 3
[3,6,9,12,15,18,21,24,27,30]
> multTableRow 5
[5,10,15,20,25,30,35,40,45,50]

I recommend you do this in two steps:

First, use the map function to create a list of partially applied functions.
If you could print out this list (which you can’t), it’d look something like:
[(1*), (2*), ..., (10*)].

Once you have that list, use map again to call each of those functions on the
input value. This is where you’ll use $. Remember to look carefully at the types
if you get confused (e.g. you might find it useful to look at the type of the list
you created in the previous paragraph, along with the type of map and $).

b. Function Composition with . (2 pts.)

Write a function called doubleNegate that takes in a list of numbers and returns
the result of doubling and negating every element of the list. You must use . in
your answer.

Hint: You may find the negate function useful.

> doubleNegate [1,2,3]
[-2,-4,-6]
> doubleNegate [0, 1.5, 5, 10]
[-0.0,-3.0,-10.0,-20.0]

4



Problem 3 – fold Applications (12 pts.)

Note: If you have trouble in this section, be sure to refer to the section of Chapter
6 of the textbook that discusses folds.

You must use one of the folding functions (foldl, foldr, foldl', . . . )
in your solutions to the problems in this section. Note that some of
the fold functions need to be imported from Data.List, while others
are available by default via Prelude

a. totalDiscount (4 pts.)

Write a function named totalDiscount that takes a discount percent (as a
decimal) and a list of prices, and returns the total amount saved by the discount.

> totalDiscount 0.1 [1]
0.1
> totalDiscount 0.1 [1, 4]
0.5
> totalDiscount 0.5 [1, 2, 3]
3.0

b. discountedItems (8 pts.)

Write a function named discountedItems that takes a discount percent and a
list of prices, and returns the total price for each item after the discounted has
been applied.

Hint: Look carefully at the type signature for whichever fold function you decide
to use and try to match the type variables to the types we have in this problem.

> discountedItems 0.1 [4, 5, 6]
[3.6, 4.5, 5.4]

5



Problem 4 – fold Reductions (20 pts.)

You should print this problem, write your answer on the pages, and
turn it in on Thursday, November 9.

Let’s explore the difference between foldl and foldr.

The top answer to this StackOverflow question is probably my most revisited
SO answer about something in Haskell. The question itself isn’t as important as
the answer – read through the bullet points at the top and the first paragraph
after those points.

Here are the definitions of foldl and foldr:
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Consider the following expression:
foldl (&&) True [False | _ <- [1..]]

Try running this in ghci.

Question a (1 pt.): What happens?

Answer:

Now replace foldl with foldr and try running it again.
foldr (&&) True [False | _ <- [1..]]

Question b (1 pt.): What happens this time?

Answer:

Now comes the hard question: Why does this happen? To figure that out, let’s
try to reduce these expressions by hand. In the two sections below, use the given
rules to write out the reduction steps. Write out enough steps to make it clear
what’s happening – you won’t be able to get to the end, of course, since we’re
dealing with infinite recursion.

For convenience, we’ll write the infinite list [False | _ <- [1..]] as
[False..], even though the latter is not valid Haskell.

Reduce the following expression: foldl (&&) True [False..] for a few steps.
You must apply rule 2 at least two times before you stop. Note that the only
requirement is that you apply rule 2 at least twice – you may not end up using

6

https://stackoverflow.com/questions/3082324/foldl-versus-foldr-behavior-with-infinite-lists


rules 3 or 4 at all, it’s kind of up to you, but using those rules may help you
answer the final question for this problem.

Initial expression: foldl (&&) True [False..]

Rules

1. [False..] => False:[False..]
2. foldl f z (x:xs) => foldl f (f z x) xs
3. True && False => False
4. False && False => False

Steps (6 pts.)

Now do the reduction steps for the expression: foldr (&&) True [False..].
This time, you should get to a final expression (the same value that ghci gave
you), as this one stops after a few steps. You should end up using all of the
provided rules this time.

Initial expression: foldr (&&) True [False..]

Rules

1. [False..] => False:[False..]
2. foldr f z (x:xs) => f x (foldr f z xs)
3. False && _ => False

Steps (6 pts.)

7



Remember that, under the hood, Haskell is doing these types of reductions for
us. That’s the whole reason we’re doing them – they help understand how the
execution is taking place, and give you a bit of insight when writing your own
code. So, finally: explain why the first case, with foldl, runs forever
and the second, with foldr, does not. (6 pts.)

8


	Haskell – Assignment 3
	Problem 1 – map and filter (12 pts.)
	a. getName, getGenres
	b. getSortedNames
	c. filterByGenre

	Problem 2 – $ and . (6 pts.)
	a. Function Application with $ (4 pts.)
	b. Function Composition with . (2 pts.)

	Problem 3 – fold Applications (12 pts.)
	a. totalDiscount (4 pts.)
	b. discountedItems (8 pts.)

	Problem 4 – fold Reductions (20 pts.)


