Haskell: Assignment 1

Notes:

e For all of the problems below, you must write a type signature for any
function/value you write in your code.

¢ You should turn in the first two problems on Canvas in a .hs file that
has the functions you define for each part. These are due by the night of
Tuesday, October 24 (midnight).

e You should print out Problem 3, write your answer on that sheet, and
turn it in on Thursday, October 26 in class.

¢ You can test your code yourself by loading your .hs file into ghci.

Problem 1 — Factorial

For each of the following sub-problems, you are going to write a factorial
function that meets a specific requirement. The following is relevant to both
parts:

e The input to the function is an Int, n

e The output of the function is the mathematical factorial of the input, n!,
also an Int

e You do not have to handle negative input values — assume the input is 0
or greater.

a. Guard Expression

Write the factorial function using a guard expression. You may want to refer
to the fibonacci function £ib in the lecture notes.

b. Pattern Matching
Write the factorial' function using pattern matching (and no guards). You
may want to refer to the second fibonacci function £ib' from the lecture notes.

Note the ’ at the end of the function name that differentiates it from the name
of the function in part a.



Problem 2 — Maybe

Haskell does not have an untyped empty value like NULL in C++, nil in Ruby,
None in Python, null in Java, etc. Instead, Haskell uses data types and poly-
morphism to reach a similar end. The type used for this is Maybe, which is
defined as:

data Maybe a = Nothing | Just a

Nothing is Haskell’s equivalent of NULL. But this type definition looks kind of
funny, primarily because of the a.

Recall Haskell’s general list type, [al. The a is a type variable, so one way to
read [a] is “a list of elements of any type”. The a in Maybe a is also a type
variable. So, just as we can have a list of Ints with the type [Int], we can also
have a Maybe Int.

Now turning to Maybe’s constructors, we have Nothing and Just a.

e Nothing is simply a constructor with no arguments — by default, its type
binding is Nothing :: Maybe a, but within a particular context it may
be Nothing :: Maybe Int, Nothing :: Maybe String, etc.

e The Just a constructor tells us that we can use the Just constructor with
an argument of any type (hence the type variable a).

Let’s look at a few examples using Maybe’s constructors.

If we bind Nothing to a symbol n and we don’t assign a type, like so:

n = Nothing

Then the compiler will infer n’s type to be Maybe a, since it has no way to
narrow down the type variable a any further.

We could also force n to be of a more specific type:

n :: Maybe Int
n = Nothing

or

n = Nothing :: Maybe Int

The compiler can infer a bit more about a binding that uses Just:

j = Just "hi"

In this case, Haskell will infer that j’s type binding must be j :: Maybe String,
since we provided a String argument to the Just data constructor.

To see where Maybe might be useful, consider the function head :: [a] -> a,
which returns the first element of a list. What if the input list is empty? head



wouldn’t be able to return a value of the expected type. In fact, if you called
head [] in ghci, you'd get an error.

Now imagine a function headMaybe with the type binding:

headMaybe :: [a] -> Maybe a

Example function calls:

headMaybe [1, 2, 3]

=> Just 1

headMaybe ['a', 'b', 'c']
=> Just 'a'

headMaybe []

=> Nothing

From these examples, we can see that headMaybe returns Just <first_element>
on success, and Nothing on failure.

Define the function headMaybe so that it behaves as described above.

Hint: All you should use on the right-hand side (RHS) of your definition are the
constructors for Maybe as well as the head function mentioned above.



Problem 3 — Reduction

Recall the Peano number data type example from lecture:

data Peano = Zero | Succ Peano
deriving Show

In lecture, we wrote a particular definition for a function add that added two
Peanos together. Our definition was longer than it needed to be, though. Here’s
a partial definition for a different form of the add function:

add :: Peano -> Peano -> Peano
add Zero p = p

a. Add one more case to the add function’s definition that completes
the definition and will successful add all Peano numbers. Write the line
below. Hint: Think about the two fundamental cases in a recursive function.

b. Using your completed definition of add, write out the reduction
steps for the expression add two one, where two = Succ (Succ Zero)
and one = Succ Zero. Be sure to define your reduction rules before you do
the reduction steps (there should be 4 rules in this case).

Rules:

Steps:



	Haskell: Assignment 1
	Problem 1 – Factorial
	a. Guard Expression
	b. Pattern Matching

	Problem 2 – Maybe
	Problem 3 – Reduction


