
Haskell: Assignment 1

Notes:

• For all of the problems below, you must write a type signature for any
function/value you write in your code.

• You should turn in the first two problems on Canvas in a .hs file that
has the functions you define for each part. These are due by the night of
Tuesday, October 24 (midnight).

• You should print out Problem 3, write your answer on that sheet, and
turn it in on Thursday, October 26 in class.

• You can test your code yourself by loading your .hs file into ghci.

Problem 1 – Factorial

For each of the following sub-problems, you are going to write a factorial
function that meets a specific requirement. The following is relevant to both
parts:

• The input to the function is an Int, n
• The output of the function is the mathematical factorial of the input, n!,

also an Int
• You do not have to handle negative input values – assume the input is 0

or greater.

a. Guard Expression

Write the factorial function using a guard expression. You may want to refer
to the fibonacci function fib in the lecture notes.

b. Pattern Matching

Write the factorial' function using pattern matching (and no guards). You
may want to refer to the second fibonacci function fib' from the lecture notes.

Note the ’ at the end of the function name that differentiates it from the name
of the function in part a.

1



Problem 2 – Maybe

Haskell does not have an untyped empty value like NULL in C++, nil in Ruby,
None in Python, null in Java, etc. Instead, Haskell uses data types and poly-
morphism to reach a similar end. The type used for this is Maybe, which is
defined as:
data Maybe a = Nothing | Just a

Nothing is Haskell’s equivalent of NULL. But this type definition looks kind of
funny, primarily because of the a.

Recall Haskell’s general list type, [a]. The a is a type variable, so one way to
read [a] is “a list of elements of any type”. The a in Maybe a is also a type
variable. So, just as we can have a list of Ints with the type [Int], we can also
have a Maybe Int.

Now turning to Maybe’s constructors, we have Nothing and Just a.

• Nothing is simply a constructor with no arguments – by default, its type
binding is Nothing :: Maybe a, but within a particular context it may
be Nothing :: Maybe Int, Nothing :: Maybe String, etc.

• The Just a constructor tells us that we can use the Just constructor with
an argument of any type (hence the type variable a).

Let’s look at a few examples using Maybe’s constructors.

If we bind Nothing to a symbol n and we don’t assign a type, like so:
n = Nothing

Then the compiler will infer n’s type to be Maybe a, since it has no way to
narrow down the type variable a any further.

We could also force n to be of a more specific type:
n :: Maybe Int
n = Nothing

or
n = Nothing :: Maybe Int

The compiler can infer a bit more about a binding that uses Just:
j = Just "hi"

In this case, Haskell will infer that j’s type binding must be j :: Maybe String,
since we provided a String argument to the Just data constructor.

To see where Maybe might be useful, consider the function head :: [a] -> a,
which returns the first element of a list. What if the input list is empty? head

2



wouldn’t be able to return a value of the expected type. In fact, if you called
head [] in ghci, you’d get an error.

Now imagine a function headMaybe with the type binding:
headMaybe :: [a] -> Maybe a

Example function calls:

headMaybe [1, 2, 3]
=> Just 1
headMaybe ['a', 'b', 'c']
=> Just 'a'
headMaybe []
=> Nothing

From these examples, we can see that headMaybe returns Just <first_element>
on success, and Nothing on failure.

Define the function headMaybe so that it behaves as described above.

Hint: All you should use on the right-hand side (RHS) of your definition are the
constructors for Maybe as well as the head function mentioned above.

3



Problem 3 – Reduction

Recall the Peano number data type example from lecture:
data Peano = Zero | Succ Peano

deriving Show

In lecture, we wrote a particular definition for a function add that added two
Peanos together. Our definition was longer than it needed to be, though. Here’s
a partial definition for a different form of the add function:
add :: Peano -> Peano -> Peano
add Zero p = p

a. Add one more case to the add function’s definition that completes
the definition and will successful add all Peano numbers. Write the line
below. Hint: Think about the two fundamental cases in a recursive function.

b. Using your completed definition of add, write out the reduction
steps for the expression add two one, where two = Succ (Succ Zero)
and one = Succ Zero. Be sure to define your reduction rules before you do
the reduction steps (there should be 4 rules in this case).

Rules:

Steps:

4


	Haskell: Assignment 1
	Problem 1 – Factorial
	a. Guard Expression
	b. Pattern Matching

	Problem 2 – Maybe
	Problem 3 – Reduction


